首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   12篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
  2015年   7篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   6篇
  2006年   3篇
  2005年   8篇
  2004年   3篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有89条查询结果,搜索用时 222 毫秒
51.
52.
53.
Five patients at risk for primary central nervous system lymphoma (PCNSL) recurrence were treated with high-dose methylprednisolone, (HDMP) to prevent ‘trafficking’ of malignant lymphocytes into the central nervous system (CNS). HDMP was chosen because of its ability to stabilize the ‘blood brain barrier (BBB)’. Three men with newly diagnosed PCNSL, ages 62, 76 and 78 y, whose survival was projected to be 6.6 months, began treatment after achieving complete response (CR) to initial radiation therapy alone and survived 27, 37 and 59 months after treatment. In none was death from recurrent disease in CNS but one patient did die of systemic non-Hodgkin’s lymphoma (NHL) five years after PCNSL diagnosis. A 20 y old man was treated with HDMP after successful combined modality therapy and is alive 75+months after initial diagnosis without evidence of disease recurrence. A 34 y old man relapsed after combined modality initial treatment and failed to respond to HDMP when treatment was begun after unsuccessful salvage therapy; he died of disease 12 months after initial diagnosis. There were no treatment complications. The promising results in this pilot study from the basis for a North Central Cancer Treatment Group (NCCTG) 96-73-51, a Phase 2 clinical trial of brain radiotherapy and HDMP for PCNSL patients 70 y of age and older, a group of patients at high risk for toxicity from intensive combined modality therapy.  相似文献   
54.
The minimal fungicidal concentration (MFC) of dihydrosphingosine (DHS), phytosphingosine (PHS), and five short-chain DHS derivatives was determined for Candida albicans and Candida glabrata. In this respect, a C15- and a C17-homologue of DHS showed a 2- to 10-fold decreased MFC as compared to native DHS (i.e. C18-DHS). DHS derivatives that were active, that is, comprising 12, 15, 17, or 18 carbon atoms, induced accumulation of reactive oxygen species (ROS) in C. albicans.  相似文献   
55.
A series of substituted benzylsulfanyl-phenylamines was synthesized, of which four substituted benzylsulfanyl-phenylguanidines (665, 666, 667 and 684) showed potent fungicidal activity (minimal fungicidal concentration, MFC ? 10 μM for Candida albicans and Candida glabrata). A benzylsulfanyl-phenyl scaffold with an unsubstituted guanidine resulted in less active compounds (MFC = 50-100 μM), whereas substitution with an unsubstituted amine group resulted in compounds without fungicidal activity. Compounds 665, 666, 667 and 684 also showed activity against single C. albicans biofilms and biofilms consisting of C. albicans and Staphylococcus epidermidis (minimal concentration resulting in 50% eradication of the biofilm, BEC50 ? 121 μM for both biofilm setups). Compounds 665 and 666 combined potent fungicidal (MFC = 5 μM) and bactericidal activity (minimal bactericidal concentration, MBC for S. epidermidis ? 4 μM). In an in vivo Caenorhabditis elegans model, compounds 665 and 667 exhibited less toxicity than 666 and 684. Moreover, addition of those compounds to Candida-infected C. elegans cultures resulted in increased survival of Candida-infected worms, demonstrating their in vivo efficacy in a mini-host model.  相似文献   
56.

Background

Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology.

Scope of review

In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis.

Major conclusions

All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast.

General significance

Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.  相似文献   
57.
RsAFP2 (Raphanus sativus antifungal peptide 2), an antifungal plant defensin isolated from seed of R. sativus, interacts with glucosylceramides (GlcCer) in membranes of susceptible yeast and fungi and induces membrane permeabilization and fungal cell death. However, using carboxyfluorescein-containing small unilamellar vesicles containing purified GlcCer, we could not observe permeabilization as a consequence of insertion of RsAFP2 in such vesicles. Therefore, we focused on a putative RsAFP2-induced signaling cascade downstream of RsAFP2-binding to GlcCer in fungal membranes. We show that RsAFP2 induces reactive oxygen species (ROS) in Candida albicans wild type in a dose-dependent manner, but not at all in an RsAFP2-resistant DeltagcsC. albicans mutant that lacks the RsAFP2-binding site in its membranes. These findings indicate that upstream binding of RsAFP2 to GlcCer is needed for ROS production leading to yeast cell death. Moreover, the antioxidant ascorbic acid blocks RsAFP2-induced ROS generation, as well as RsAFP2 antifungal activity. These data point to the presence of an intracellular plant defensin-induced signaling cascade, which involves ROS generation and leads to fungal cell growth arrest.  相似文献   
58.
Aquaporins (AQP) 1, 2, 3 and 4 belong to the aquaporin water channel family and play an important role in urine concentration by reabsorption of water from renal tubule fluid. Renal AQPs have not been reported in the yak (Bos grunniens), which resides in the Qinghai Tibetan Plateau. We investigated AQPs 1?4 expressions in the kidneys of Yak using immunohistochemical staining. AQP1 was expressed mainly in the basolateral and apical membranes of the proximal tubules and descending thin limb of the loop of Henle. AQP2 was detected in the apical plasma membranes of collecting ducts and distal convoluted tubules. AQP3 was located in the proximal tubule, distal tubule and collecting ducts. AQP4 was located in the collecting ducts, distal straight tubule, glomerular capillaries and peritubular capillaries. The expression pattern of AQPs 1?4 in kidney of yak was different from other species, which possibly is related to kidney function in a high altitude environment.  相似文献   
59.
Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma–plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR‐prime phase). Finally, we discuss the ISR‐boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea.  相似文献   
60.
Plant defensins   总被引:30,自引:2,他引:28  
Thomma BP  Cammue BP  Thevissen K 《Planta》2002,216(2):193-202
Plant defensins are small, basic peptides that have a characteristic three-dimensional folding pattern that is stabilized by eight disulfide-linked cysteines. They are termed plant defensins because they are structurally related to defensins found in other types of organism, including humans. To date, sequences of more than 80 different plant defensin genes from different plant species are available. In Arabidopsis thaliana, at least 13 putative plant defensin genes (PDF) are present, encoding 11 different plant defensins. Two additional genes appear to encode plant defensin fusions. Plant defensins inhibit the growth of a broad range of fungi but seem nontoxic to either mammalian or plant cells. Antifungal activity of defensins appears to require specific binding to membrane targets. This review focuses on the classification of plant defensins in general and in Arabidopsis specifically, and on the mode of action of plant defensins against fungal pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号